The choice of the solution method in the construction of the forecast model

Today, let’s talk about choosing a solution method when building a forecast model. Consider the advantages and disadvantages of different methods.

  1. Models of forecasting time series of the SARIMA family (AR, MA, ARIMA, SARIMA)

Advantage: A widely used method for predicting time series

Disadvantage: Slow learning curve, requires large computational resources, inability to take into account the influence of external factors.

  1. Linear regression

Advantage: Fast learning curve

Disadvantage: The accuracy of the forecast, the inability to specify categories

  1. Random Forest Regression

Advantage: Ability to add external factors and categories, built-in methods for assessing the significance of individual characteristics, scalability

Disadvantage: Slower in learning than linear regression; increased memory requirement.

Send a request and get a step-by-step plan for the
implementation of our solutions in your business, as well
as a forecast to increase efficiency as a result of their work

    By filling out the form, you agree with the rules for processing personal data.

    Мы используем файлы cookies, чтобы получать статистику и делать наш сайт и другие сервисы удобными для вас. Продолжая дальнейшее использование сайта и/или его сервисов, вы соглашаетесь с этим. Более подробную информацию можно прочитать в «Политика обработки персональных данных» и в «Политика Cookies»